\( s = v \cdot t \)
\( s = v_0 t + \frac{1}{2} a t^2 \)
\( v = v_0 + a t \)
\( a = \frac{v^2}{r} \)
\( F = m \cdot a \)
\( F_t = \mu N \)
\( F = k x \)
\( F = \frac{m v^2}{r} \)
\( W = F \cdot s \cos \alpha \)
\( E_k = \frac{1}{2} m v^2 \)
\( E_p = m g h \)
\( P = \frac{W}{t} \)
\( F = \frac{G \cdot m_1 m_2}{r^2} \)
\( g = \frac{GM}{r^2} \)
\( v = \sqrt{\frac{GM}{r}} \)
\( E_p = -\frac{G \cdot m_1 m_2}{r} \)
\( M = F \cdot r \)
\( I = m r^2 \)
\( K = \frac{1}{2} I \omega^2 \)
\( \omega = \frac{2 \pi}{T} \)
\( p = \rho g h \)
\( F = \rho g V \)
\( A_1 v_1 = A_2 v_2 \)
\( p + \frac{1}{2} \rho v^2 + \rho g h = \text{const} \)
\( Q = m c \Delta T \)
\( p V = n R T \)
\( \Delta U = Q + W \)
\( Q = m L \)
\( f = \frac{1}{T} \)
\( v = \lambda f \)
\( T = 2 \pi \sqrt{\frac{l}{g}} \)
\( T = 2 \pi \sqrt{\frac{m}{k}} \)
\( f' = f \cdot \frac{v \pm v_o}{v \mp v_z} \)
\( I = \frac{P}{A} \)
\( F = \frac{k \cdot q_1 q_2}{r^2} \)
\( E = \frac{F}{q} \)
\( U = q V \)
\( C = \frac{Q}{U} \)
\( E_p = \frac{k \cdot q_1 q_2}{r} \)
\( V = I R \)
\( P = V I = I^2 R \)
\( W = P t \)
\( R = \frac{\rho l}{S} \)
\( F = q v B \sin \alpha \)
\( \varepsilon = -\frac{\Delta \Phi}{\Delta t} \)
\( \varepsilon = B l v \)
\( \Phi = B \cdot S \cdot \cos \alpha \)
\( n_1 \sin \alpha = n_2 \sin \beta \)
\( \frac{1}{f} = \frac{1}{x} + \frac{1}{y} \)
\( p = \frac{y}{x} \)
\( \frac{1}{f} = (n - 1) \left( \frac{1}{R_1} + \frac{1}{R_2} \right) \)
\( Z = Z_1 + Z_2 - d \cdot Z_1 Z_2 \)
\( E = h f \)
\( E = \frac{h c}{\lambda} \)
\( p = \frac{h}{\lambda} \)
\( L_n = n \hbar \)
\( E_n = -\frac{13.6}{n^2} \, \text{eV} \)
\( \Delta E = E_{\text{j}} - E_{\text{i}} \)
\( \lambda = \frac{hc}{\Delta E} \)
\( r_n = n^2 \cdot r_1 \)
\( E = \Delta m \cdot c^2 \)
\( N = N_0 e^{-\lambda t} \)
\( T_{1/2} = \frac{0.693}{\lambda} \)
\( t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} \)
\( L' = L \cdot \sqrt{1 - \frac{v^2}{c^2}} \)
\( p = \frac{p_0}{\sqrt{1 - \frac{v^2}{c^2}}} \)
\( u = \frac{u' + v}{1 + \frac{u' v}{c^2}} \)
\( E = m c^2 \)
\( E = \sqrt{p^2 c^2 + m_0^2 c^4} \)
\( f' = f \cdot \sqrt{\frac{c - v}{c + v}} \)
\( v_{\text{orb}} = \sqrt{\frac{GM}{r}} \)
\( \lambda_{\text{max}} \cdot T = b \)
\( E = \sigma T^4 \)
\( P = 4 \pi R^2 \cdot \sigma T^4 \)
\( v = H_0 \cdot d \)
\( z = \frac{\lambda_{\text{ob}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} \)
\( z \approx \frac{v}{c} \)
\( z = \sqrt{\frac{1 + \beta}{1 - \beta}} - 1 \)
\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)
\( c = 3.00 \times 10^8 \, \text{m/s} \)
\( h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s} \)
\( e = 1.60 \times 10^{-19} \, \text{C} \)
\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)
\( R = 8.31 \, \text{J} / (\text{mol} \cdot \text{K}) \)
\( b = 2.898 \times 10^{-3} \, \text{m} \cdot \text{K} \)
\( \sigma = 5.670 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4 \)
\( H_0 = 70 \, \text{km/s/Mpc} \)